
Hierarchical Heuristic Forward Search in Stochastic Domains

Nicolas Meuleau∗

NASA Ames Research Center
Mail Stop 269-3

Moffet Field, CA 94035-1000, USA
nmeuleau@email.arc.nasa.gov

Ronen I. Brafman
Department of Computer Science

Ben-Gurion University
Beer-Sheva 84105, Israel

brafman@cs.bgu.ac.il

Abstract

Many MDPs exhibit an hierarchical structure where
the agent needs to perform various subtasks that are
coupled only by a small sub-set of variables con-
taining, notably, shared resources. Previous work
has shown how this hierarchical structure can be
exploited by solving several sub-MDPs represent-
ing the different subtasks in different calling con-
texts, and a root MDP responsible for sequencing
and synchronizing the subtasks, instead of a huge
MDP representing the whole problem. Another im-
portant idea used by efficient algorithms for solv-
ing flat MDPs, such as (L)AO* and (L)RTDP, is
to exploit reachability information and an admissi-
ble heuristics in order to accelerate the search by
pruning states that cannot be reached from a given
starting state under an optimal policy. In this pa-
per, we combine both ideas and develop a variant of
the AO* algorithm for performing forward heuris-
tic search in hierarchical models. This algorithm
shows great performance improvements over hier-
archical approaches using standard MDP solvers
such as Value Iteration, as well as with respect to
AO* applied to a flat representation of the prob-
lem. Moreover, it presents a general new method
for accelerating AO* and other forward search al-
gorithms. Substantial performance gains may be
obtained in these algorithms by partitioning the set
of search nodes, and solving a subset of nodes com-
pletely before propagating the results to other sub-
sets.

In many decision-theoretic planning problems, the agent
needs to perform various subtasks that are coupled only by
a small sub-set of variables. A good example of this is our
main application domain: planetary exploration. In this do-
main, the agent, an autonomous rover, must gather scientific
data and perform experiments at different locations. The in-
formation gathering and experiment running task at each site
is pretty much self-contained and independent of the other
sites, except for two issues: the use of shared resources (such
as time, energy and memory), and the state of some instru-

∗QSS Group Inc.

ments that may be used at different locations (for instance,
warmed-up or not). The rover has only limited resource for
each plan execution phase and it must wisely allocate these
resources to different tasks. In most problem instances, the
set of tasks is not achievable jointly, and the agent must dy-
namically select a subset of achievable goals as a function of
uncertain events outcome.

These problems are often called oversubscribed planning
problems. They have a natural two-level hierarchical struc-
ture [Meuleau et al., 2006]. At the lower level, we have the
tasks of conducting experiments at each site. At the higher
level, we have the task of selecting, sequencing and coor-
dinating the subtasks (in the planetary rover domain, this
includes the actions of tracking targets, navigating between
locations, and warming-up instruments). This hierarchical
structure is often obvious from the problem description, but it
can also be recognized automatically using factoring methods
such as that of [Amir and Englehardt, 2003].

The potential benefit of hierarchical decomposition is clear.
We might be able to solve a large problem by solving a num-
ber of smaller sub-problems, potentially gaining an exponen-
tial speed-up. Unfortunately, the existence of an hierarchi-
cal decomposition does not imply the existence of an opti-
mal decomposable policy. Thus, one must settle for certain
restricted forms of optimality, such as hierarchical optimal-
ity [Andre and Russell, 2002], or consider domains in which
compact optimal policies exist, such as those that satisfy the
reset assumption of [Meuleau et al., 2006].

This paper formulates an hierarchical forward heuristic
search algorithm for And-Or search spaces, which we refer
to as Hierarchical-AO* (HiAO*). This algorithm exploits a
hierarchical partition of the domain to speed up standard AO*
search [Nilsson, 1980]. It may be applied anywhere that AO*
may be applied, that is, for all problems that can represented
as an acyclic And-Or graph, provided an hierarchical parti-
tion of the search space is defined. This could be MDPs or
any other search problem.1 Although there is no formal guar-
antee that it will result in actual performance improvements,
our simulations with the rover domain show that it has a great
potential for oversubscribed planning problems. Further work

1Like standard AO*, HiAO* is not designed to work on prob-
lems that contain loops. A similar extension to that in [Hansen and
Zilberstein, 2001] is required to handle these problems.

is required to show the relevance of this approach in a more
general setting. However, this paper outlines directions that
could benefit a wide variety of application domains, and other
forward search algorithms such as A*.

The reason why forward heuristic search can be benefi-
cial in hierarchical MDPs is pretty obvious. It is the well-
known benefit of using reachability information and admis-
sible heuristic. The most efficient algorithms for solving flat
MDPs, such as (L)AO* [Hansen and Zilberstein, 2001] and
(L)RTDP [Barto et al., 1995; Bonet and Geffner, 2003], ac-
celerate the search by pruning states that cannot be reached
from a given starting state under an optimal policy. The
same benefit can be expected in a hierarchical representa-
tion of the problem. Hierarchical algorithms such as Abort-
Update [Meuleau et al., 2006] must resolve similar sub-
problems, but in different calling contexts. Implementations
based on classical MDP solvers such as Value Iteration or Pol-
icy Iteration, which ignore the initial state, must consider all
possible contexts. Forward search algorithms consider only
reachable contexts, and with a good heuristic function, only a
subset of these.

More interesting are the reasons why HiAO* can outper-
form standard heuristic search over flat-domains as imple-
mented in standard AO*. The first reason has to do with the
order and efficiency of the value propagation step, which is
known to be the costliest part of AO*. HiAO* embodies a
lazy approach to value updates: the update work is concen-
trated within a particular sub-domain each time, and work on
other domains is postponed until their value is needed.

The second benefit of the hierarchical partitioning of the
domain is the possibility to use macro-connectors. When
the optimal solution over a subset of states is known, it can
be represented as a macro-connector similar to the tempo-
rally abstract actions or macro-actions used in Reinforce-
ment Learning [Sutton et al., 1999]. Macro-connectors are
then used while solving other subsets of states, to accelerate
the traverse of the graph.

The third benefit of forward heuristic search in a hierarchi-
cal representation is the possibility of using a known solution
of a subtask to seed the algorithm in charge of solving sim-
ilar subtasks. As will become apparent later, the dynamics
within a sub-problem is not influenced by the calling context.
The latter influences the value of nodes, and thus the optimal
policy, but not the search space structure. Therefore, we can
reuse expanded solutions for different calling context, using
them as starting points. Although farther expansion will be
required, we are likely to benefit from much of this work.

Finally, with a decomposed domain, we believe that one
can formulate more accurate heuristic functions that are ap-
propriate for each of the sub-domains. A simple example
would be the assessment of the value of a sub-domain under
new calling contexts. We can simply use the value computed
for similar contexts. A more sophisticated example would be
the use heuristics specifically designed for a particular sub-
domains.

In this paper, we focus on explaining and testing the first
three points above. We provide an abstract, and quite gen-
eral interpretation of the use of any hierarchical decomposi-
tion in AO* in terms of (1) propagation order, (2) extra level

by-passing edges, and (3) local solution re-use. These three
properties emerge naturally when one attempts to search hi-
erarchically, and they can be used given an arbitrary parti-
tioning of the state space (that is, beyond the application to
oversubscription planning). This formulation, its abstract in-
terpretation, and its evaluation in the rover domain are the
main contributions of this paper.

In the next section, we explain how we model hierarchical
MDPs. Then, we review the AO* algorithm, we explain the
new HiAO* algorithm, and we show how it can be applied to
oversubscribed planning problems. Finally, we describe our
empirical evaluation of HiAO* and conclude.

1 Hierarchical MDPs
A Markov Decision Process (MDP) [Puterman, 1994] is a
four-tuple 〈S, A, T, R〉, where S is a set of states, A is a set
of actions, T : S × A × S → [0, 1] is the transition func-
tion which specifies for every two states s, s′ ∈ S and action
a ∈ A the probability of making a transition from s to s′ when
a is executed, and R : S×A×S → R is the reward function.
We augment the above description with a concrete initial state
sinit ∈ S, obtaining a quintuple 〈S, A, T, R, sinit〉. In this pa-
per, we focus on bounded-horizon MDPs (in which the length
of each trajectory is bounded by a finite number) and we use
the undiscounted expected reward criterion.

We shall concentrate on factored MDPs which have the
form 〈X, A, T, R, sinit〉. Here X is a set of state variables,
and A, T, R, sinit are as before. The variables in X induce
a state space, consisting of the Cartesian product of their do-
mains. To simplify notations, we assume all variables are
boolean, that is, they are fluents. Typically, it is assumed that
the transition function T is also described in a compact man-
ner that utilizes the special form of the state space, such as
dynamic Bayes net [Dean and Kanazawa, 1993] or proba-
bilistic STRIPS rules [Hanks and McDermott, 1994]. In this
paper, we do not commit to a concrete action description lan-
guage, but we expect it to be variable-based, such as the above
methods, as we assume that it is easy to identify the relevant
variables with respect to an action a ∈ A. This is the set
of variables whose value can change when a is executed, as
well as those variables that affect the probability by which
these variables change their value and the immediate reward
received for executing a.

An hierarchical decompositions of an MDP consists of a
set of smaller factored MDPs. In its definition, the notion
of a projection of T and R plays a central role. Let X ′ be
some subset of the variables in X . The projection of T over
X ′ w.r.t. action a ∈ A is well defined if a does not affect the
value of the variables in X\X ′ and the transition probabilities
and reward of a do not depend on the value of these variables.
In that case, the actual projection can be obtained by fixing
some arbitrary value to the variables in X \X ′.

Formally, we define a hierarchical decomposition of
a factored MDP M = 〈X, A, T, R, sinit〉 as a tree of
factored MDPs, MH = {M0, . . . , Mn}, where Mi =
〈Xi, A

+

i , Ti, Ri, s
init
i 〉. Each Mi is just a factored MDP. The

only difference is that its set of actions, A+

i contains a number
of special control actions which signify the passing of control

Navigate (*,*)

Trackstart (*)

Cored(R1)

DoneIP(R1)

Cored(R2)

DoneIP(R2)

Done(R1)

Tracked(R1)

At(R1) e = 0
e = 1
e = 2
 ...

At(R2)

Done(R2)

Tracked(R2)

At(Start)

At(Waypoint)

Resources:
IP(R1)

TakePicture(R1)

Core(R1)
IP(R2)

TakePicture(R2)

Core(R2)

PSfrag replacements
X̃0:

M0

A0:

X̃1:

X̄1:

M1

A1:

X̃2:

X̄2:

M2

A2:

µ1

µ2

Abort
Abort

Figure 1: Decomposition of a simple rover problem: a root
process M0 navigates among two rocks, R1 and R2, and
schedules two corresponding subprocesses M1 and M2 (IP
stands for “Instrument Placement”). X̃i is the set of private
variables of process i, and X̄i is the separation between sub-
task i and the root process.

to its parent or one of its children. These actions encode the
hierarchy, too. More specifically, Xi ⊆ X ; A+

i is the union
of some subset Ai ⊆ A together with two types of control
actions: µj corresponds to passing control to a child process
Mj , and Abort signifies the passing of control back to the par-
ent process; Ti is the projection of T over Xi, such that Ti is
well-defined; Ri depends on Xi and Ai only; and sinit

i is the
projection of sinit over Xi. In addition,

⋃
i=1,...,n Xi = X ,⋃

i=1,...,n Ai = A, Ai ∩ Aj = ∅ for every i 6= j, and when-
ever x ∈ Xi∩Xj then x ∈ Xk for every k such that Mk is on
the path between Mi and Mj (which is known as the running
intersection property). See [Meuleau et al., 2006] for a more
detailed description of this model. A decomposition of M
into MH can be obtained automatically by a straightforward
extension of the methods described in [Amir and Englehardt,
2003] for deterministic planning domains.

As an illustration, Fig. 1 describes a decomposition of a
simple planetary rover domain into three sub-domains. M0

is the top-level domain in which we control the position of
the rover and the choice of which subtask to perform next
(these are the µi actions). M1 and M2 represent the subtasks
associated with experimenting on of one of two rocks. M0

shares some variables with its children, and the resource level
is a variable shared by all.

2 Hierarchical AO*

We start with a short review of the AO* algorithm. Next, we
show how a hierarchical partition of the search nodes may
be exploited to accelerate the algorithm, and we provide the
pseudo-code of a new general algorithm called Hierarchical-
AO* (HiAO*).

1: Initialize the explicit graph G to the start state sinit.
2: Mark sinit as open.
3: while the greedy solution graph contains some open

nodes do
4: s := any open node of the greedy graph.
5: Unmark s as open.
6: EXPAND(s). // Expand the greedy graph
7: UPDATE(s). // Update state values and mark best ac-

tions
8: Return the greedy solution graph.

Algorithm 1: Standard AO*.

1: for each a ∈ A do
2: for each s′ ∈ S such that T (s, a, s′) > 0 do
3: if s′ /∈ G (s′ is not already present in G) then
4: Add s′ to G.
5: if s′ is a terminal state then
6: V (s′) := 0.
7: else
8: V (s′) := H(s′).
9: Mark s′ as open.

10: Add the connector (s, a, ·) to G.

Algorithm 2: EXPAND(s).

2.1 The AO* Algorithm
AO* [Nilsson, 1980] is a generalization of A* to And-Or
graphs. As such, it can be applied to the problem of gen-
erating a policy for an MDP given an initial state, assuming
there are no loops in the transition graph [Hansen and Zilber-
stein, 2001]. In MDPs, an OR node corresponds to a choice
of an action at a state, and an AND node corresponds to the
set of possible states resulting from each such choice. The
possible AND nodes are annotated by their probability.

AO* maintains two basic structures: the explicit graph and
the greedy graph. The explicit graph simply depicts the por-
tion of the search space that has been expanded so far. The
greedy graph is a subgraph of the explicit graph which repre-
sents those nodes that are reachable by the greedy policy. To
obtain the greedy graph, one needs to perform dynamic pro-
gramming in the explicit graph, propagating values bottom-
up from the leaf nodes (using their heuristic values) to the root
node. The value of an AND node is the expected value of its
children, and the value of an OR node is the maximum over
the value of its children. If we note the choice that yielded this
maximum, we can now generate the greedy graph by simply
following these choices starting at the root node. The pseudo-
code for AO* is described in Algorithms 1 - 3.

If an admissible heuristic function is used in AO*, then
the value of each node may only decrease at each iteration.2

When we update the value of a node outside the greedy graph,
the greedy graph may not be affected because the update can
only reduce the value of the node. Thus, a choice that was
sub-optimal cannot become optimal. Consequently, new node
values need only be propagated up edges marked as optimal,

2In a reward-maximization framework, an admissible heuristic is
an heuristic that never underestimates the value of a state.

1: Create set Z containing only the state s.
2: repeat
3: Remove from Z a state s′ such that no descendent of

s′ in G occurs in Z.
4: Set V (s′) := maxa∈A[∑

s′′∈G T (s′, a, s′′) (R(s′, a, s′′) + V (s′′))
]

and mark the connector associated with the best action
in s′ as optimal.

5: if V (s′) decreased at previous step (it cannot increase)
then

6: Add all parents of s′ along connectors marked as
optimal to Z.

7: until Z is empty.

Algorithm 3: UPDATE(s).

1: Initialize the explicit graph G to the start state sinit.
2: Mark sinit as open.
3: SOLVE(S0, s

init).
4: Return the greedy solution graph starting at sinit.

Algorithm 4: Hierarchical AO*.

i.e., denoting the optimal choice in that state.
In most cases, the most expensive parts of AO* are: (1)

the update stage, where we propagate value changes up the
explicit graph (Alg. 3); (2) the computation of the fringe, that
is, the set of open nodes in the greedy graph (line 2 of Alg. 1).
We show below how a partition of the states expanded by
AO* may be exploited to accelerate these two operations.

2.2 The HiAO* Algorithm

We now assume that the state space S is partitioned into sub-
sets S0, . . . ,Sk. Furthermore, we assume that these subsets
are organized in a hierarchy in the form of a tree,3 so that:
(1) the starting state sinit belongs to the root subset denoted
S0; (2) state transitions are possible only between states in the
same subsets, or between two states belonging to two subsets
one being the parent of the other. These choices are motivated
by the hierarchical MDP framework presented above, where
a child subset represents a subprocess that can be called from
the current subset/process (therefore, we sometime use the
term “subprocess” to designate a child subset). However, our
formalism is general and can be applied to any instantiation
of AO* where a hierarchy of nodes can be defined.

The HiAO* algorithm is presented in Alg. 4 - 6. The al-
gorithm also uses the same function EXPAND() as standard
AO* (Alg. 2). The basic principle of this algorithm is the fol-
lowing: each time that the optimal action in a state leads to a
child subset (in other words, each time it appears optimal to
call a subprocess from the current state), we recursively call
the HiAO* algorithm to solve this child subset completely
before continuing solution of the current level. We explain
below how this simple mechanism may benefit the algorithm.

3The algorithm can be generalized to handle hierarchies repre-
sented by a directed acyclic graph.

1: while the greedy solution graph starting at s contains
some open nodes in Si do

2: s′ := any open node of the greedy graph starting at s
in Si.

3: Unmark s′ as open.
4: EXPAND(s′).
5: Mark all nodes created at previous step and that belong

to a child of Si as outdated.
6: HIERARCHICALUPDATE(Si, s

′).

Algorithm 5: Function SOLVE(Si, s).

Delaying the propagation of new values: The main prin-
ciple implemented by HiAO* is to delay the propagation of
new node values in between states belonging to different
subsets. Let us first consider why delaying updates might
be useful. Suppose that we have expanded node u and
then node v, and following their expansion, their value has
changed. In standard AO*, following the change in value in u
we would propagate this information upwards along marked
edges. Then, we would repeat the process for v. However,
it is quite possible that u and v have common ancestors, and
thus we will update these ancestors twice. Sometimes, such
an update is important because it influences our choice of
which node to expand. Sometimes, such an update can be
delayed, and we can save the repeated update of shared an-
cestors. HiAO* tries to exploit the second case, assuming it
happens more often than the first case.

The general scheme we propose for delaying updates is as
follows. We associate to each subset Si a set of nodes to up-
date Zi similar to the set Z used in Alg. 3. At any particular
point, the algorithm has a single subset of nodes in focus and
performs the standard AO* operations only inside of that sub-
set. Whenever a state s ∈ Si is expanded and thus needs to be
evaluated, we insert it into Zi and enter a loop that will prop-
agate its value up into the graph by emptying and re-filling
the set Zi, as in standard AO* (Alg. 3). However, each time
that a new value needs to be propagated to a state s′ belong-
ing to another subset Sj , j 6= i (Sj is necessarily the parent
or a child of Si), s′ is added to Zj and not to Zi (line 18 of
Alg. 6), and so, it is excluded from the loop that works only
with Zi. So, the propagation is limited to the subset Si, and
nodes that would need to be updated but belong to another
subset Sj are just stored in Zj , but they are not re-evaluated
yet and their new value is not propagated yet.

So, when are the nodes in Sj , j 6= i updated? The an-
swer depends on the hierarchical relation between Sj on Si.
If Sj is the parent of Si, then the states that have been put in
Zj during the solution of Si are updated when the algorithm
moves focus from Si back to its parent subset Sj . If Sj is
child of Si, then the states in Zj are updated at the latest pos-
sible time, that is, when we want to evaluate a state outside
of Sj that may lead into Sj under the optimal action. This
may never happen if calling subprocess Sj is the optimal de-
cision in none of the states visited by the algorithm later on,
in which case we save all the work of updating states in Sj .
In practice, this is implemented through the use of outdated
markers, as explained below.

One of the basic principle of the HiAO* algorithm is that,

1: Zi := Zi ∪ {s}.
2: while Zi 6= ∅ do
3: Remove from Zi a state s′ such that no descendent of

s′ in G occurs in Zi.
4: Set V (s′) := maxa∈A[∑

s′′∈G T (s′, a, s′′) (R(s′, a, s′′) + V (s′′))
]
,

call a∗(s′) the optimal action in s′, and mark the
associated connector as optimal.

5: while executing a∗(s′) in s′ may lead to states that are
not in Si and that are marked as outdated do

6: for each child Sj of Si do
7: for each s′′ ∈ Sj such that T (s′, a∗(s′), s′′) > 0

and s′′ is marked as outdated do
8: Unmark s′′ as outdated.
9: HIERARCHICALUPDATE(Sj , NULL).

10: SOLVE(Sj , s
′′).

11: Set V (s′) := maxa∈A[∑
s′′∈G T (s′, a, s′′) (R(s′, a, s′′) + V (s′′))

]
,

call a∗(s′) the optimal action in s′, and mark the
associated connector as optimal.

12: if V (s′) decreased at previous step (it cannot increase)
then

13: for each state s′′ that is a parent of s′ along a con-
nector marked as optimal do

14: if s′′ ∈ Si then
15: Add s′′ to Zi.
16: else
17: Call Sj , j 6= i, the subset containing s′′.
18: Add s′′ to Zj .
19: if Sj is a child of Si then
20: Mark s′′, and all its predecessors in Sj along

connectors marked as optimal, as outdated.

Algorithm 6: Function HIERARCHICALUPDATE(Si, s).

when we are done updating a node in Si that can possibly
lead to a node s in a child subset Sj (j 6= i) under the optimal
action, then we must know with accuracy the set of optimal
decisions that leads from s either to terminal states, or back
into Si. A node of Sj is marked as outdated if the greedy
subgraph starting at that node has a chance of not being ac-
curate or complete. Suppose that the algorithm is currently
working in subset Si and needs to propagate a new value to
a state s belonging to a child Sj of Si. Then, as explained
above, the update of s is delayed and s is just added to Zj

(line 18 of Alg. 6). In addition, all nodes of Sj “above” s in
the greedy graph are marked as outdated (line 19 and 20 of
Alg. 6). Later, if we want to evaluate a node outside of Sj that
can lead to a state s′ ∈ Sj , the value of s′ may not be accurate,
because we have delayed propagation of new values in Sj . If
this is the case, then s′ must be marked as outdated and, con-
sequently, two operations are performed: (1) we purge the set
Zj and update all the nodes in Sj that need to be re-evaluated
using a recursive call to HIERARCHICALUPDATE() (line 9 of
Alg. 6). This may change the greedy policy in Sj below some
of the entry nodes of Sj , including node s′; (2) the greedy
graph starting at s′ in Sj is updated through a call to SOLVE()
(line 10 of Alg. 6). So, the outdated marker in s′ may be

deleted (line 8 of Alg. 6), but the markers of all other entry
nodes are kept.4 If we later get to update another state outside
of Sj and that can lead to s′′ ∈ Sj , then the outdated marker
of s′′ will indicate that the greedy graph below s′′ in Sj needs
to be updated, even if no new node has been added to Zj in
the mean time.

Convergence: As long as the problem contains no loop, Hi-
erarchical AO* is guaranteed to terminate in finite time and
to return the optimal solution:

Theorem 1 If the heuristic H is admissible, then HiAO* re-
turns the optimal policy in finite time.

HiAO* may not always be efficient, particularly if the number
of connections between subsets is large. However, we claim
that, in the case of oversubscription planning, the state par-
tition induced by the hierarchy is efficient and allows lever-
aging the general principle presented above. The simulation
results presented in this paper support this claim.

We now present two acceleration techniques that can be
implemented in HiAO* to get further leverage from the hier-
archy, but are not used in the pseudo-code of Alg. 4 - 6.

Optimizing the algorithm: The HiAO* algorithm pre-
sented above exhibits the following inefficiency. If an ac-
tion a leading to a state s′ ∈ Sj appears optimal in state
s ∈ Si (i 6= j), then the algorithm will SOLVE completely
the sub-problem Sj starting in s′ before returning to state s.
In the process of solving Sj , the Q-value of action a in s
may only decrease, so that it may happen that, before we are
done solving Sj , a does not appear as optimal in s anymore.
The algorithm presented above will not detect this and single-
mindedly continue solving Sj until the greedy policy starting
in s′ is known, which can be highly inefficient.

This issue can easily be addressed under an additional hy-
pothesis that is satisfied in the hierarchical planning context
described above and that could easily be relaxed to deal with
a more general case. We assume that each action either does
not change the partition subset (in the case of hierarchical
planning, this holds true for all primitive actions a ∈ A),
or it leads with certainty to a single state belonging to a dif-
ferent subset (this is the case of control passing actions µi

and Abort). Then, we can modify the algorithm by adding
a threshold parameter τ to the function SOLVE(S, s) so that,
when the value of s falls below τ during the solution of S, the
function exits. In the initial call to SOLVE (line 3 of Alg. 4),
the threshold parameter is set to −∞, so that optimization
will be pursued until its end. Later calls (line 10 of Alg. 6) are
performed in the following way: while computing the value
of a state (lines 4 and 11 of Alg. 6), we record the Q-value
of the best action that does not change the partition subset
(primitive action), the Q-value of the best action that induce
a change of subset (control-passing action), and the Q-value
of the second best control-passing action. If a control-passing
action appears optimal and we enter the loop in lines 5 to 11,

4A straightforward improvement to the algorithm is to delete the
outdated marker in all nodes of Sj belonging to the greedy graph
starting in s

′ after recomputing this graph.

then the threshold parameter τ used for the call to SOLVE()
in line 10 is set to the Q-value of the best primitive action, or
the second best control-passing action, depending on which
is greater. In this way, SOLVE aborts the solution of a child
subset as soon as the action leading into it does not appear
optimal anymore. Note that the outdated marker is removed
(line 8 of Alg. 6) only if SOLVE completed.

By-passing levels: Two of the operations of standard AO*
require it to traverse up or down a large part of the explicit
graph. The function EXPAND() selects a node on the fringe of
the greedy graph. This requires computing the fringe, which
is done by following marked edges down from the root note.
This operation is often one of the most costly.5 The function
UPDATE() also propagates information up the graph, when
determining the greedy parents of a recently updated nodes
(line 6 of Alg. 3). Because HiAO* performs the standard
AO* operations only inside of a subset of nodes, it saves time
on both operations. First, the search graph projected to each
subset is smaller, so that the size of the fringe for that subset
and the time to compute it is likely to be (much) smaller. Of
course, by doing this, we expand the most promising fringe
node in a given subset, and not in the entire greedy graph as
AO* does. So, we influence the order in which nodes are
selected for expansion, which may have good or bad conse-
quences. Second, as explained before, HiAO* postpones the
propagation of some values from a subset to another other,
and thus limits the propagation of information up in the graph.

To gain more leverage, HiAO* may be augmented with
macro-connectors that represent the effect of applying the
greedy solution for a subset of nodes. Macro-connectors are
then used when solving other subsets, to accelerate the tra-
verse of the graph. Imagine, for instance, that u belongs to
Si, and applying some action a leads from u to u′ ∈ Sj ,
j 6= i, and then applying a′ leads from u′ to u′′ ∈ Si. Then,
we add an explicit edge between u and u′′ and we use it when
solving Si. By doing this, we build, in effect, a projection
of the greedy graph on Si. The new edge between u and u′′

helps us during the solution of Si in two circumstances: when
we compute the fringe, we can jump over a large number of
states that flat AO* would have considered individually; and
similarly when we determine the greedy parents of a recently
updated node. Creating and maintaining macro-connectors
increases the complexity of HiAO* slightly, but the efficiency
gained compensates for this extra cost. Indeed, our simula-
tions showed that this is one of the major causes of the good
performances exhibited by our algorithm.

3 Application to Oversubscription Planning
We now focus on the class of problems that motivates this
work, that is, oversubscribed planning problems. Follow-
ing [Meuleau et al., 2006], these problems are naturally mod-
elled in the hierarchical planning framework presented above
with a two-level hierarchy. There is a single root process M0

5It is possible to store the fringe and update it as we progress, but
it turns out that because the structure we are searching is a directed
acyclic graph, not a tree, this is a costly operation.

and multiple leaf/child processes Mi, i = 1, . . . n represent-
ing the different subtasks the agent can select to perform. For
each subprocess Mi, we define:

• X̄i = Xi ∩ X0 are the separator (shared) variables be-
tween M0 and Mi. The shared variables include, but
are not limited to, the shared resource levels. They may
also include, for instance, the state of instruments used
to perform several subtasks.

• X̃i = Xi \X0 are the private variables of Mi. Typically,
they represent the state of advancement of the subtask.

• X0−i = X0 \Xi is the difference of M0 and Mi.

The set of private variables of M0 is defined as X̃0 = X0 \⋃n

i=1
Xi =

⋂n

i=1
X0−i. We also define various classes of

states: S = 2X , Si = 2Xi , S̄i = 2X̄i , S̃i = 2
eXi , S0−i =

2X0−i .
We restrict our attention to domain satisfying the reset as-

sumption of [Meuleau et al., 2006]. The reset assumption
states that whenever the process moves into a child sub-MDP,
the state of the private variables of this sub-MDP is the same.
It holds true in the rover domain because the rover must have
its arm stowed and all of its instruments parked prior to any
movement, and so, this is its configuration when it arrives at
a new rock/subtask. Moreover, actions of preparing the rock
for a measurement, such as coring the rock, have to be redone
if we abort this rock before completing the measure, because
it is not possible to put the rover arm exactly at the place it
was when the rock was cored. So, all intermediate work to-
wards the goal is lost once we move to another rock. Note
that variables that are not private to the child sub-MDP, such
as resource levels, are not reset to their initial value when we
abort the subtask. Note also that this assumption is not as re-
strictive as it may look, since the user may modify the sets
X̄I if needed: if some intermediate work may be preserved
when we abort a subtask Mi before its completion, then the
fluent representing this intermediate state should be moved
from X̃i to X̄i. However, HiAO*, as well as the algorithms
in [Meuleau et al., 2006], work better if the separation sets
are as small as possible.

Under the reset assumption, the space of reachable states is
naturally partitioned into a hierarchy of subsets. The root sub-
set S0 represents the states where all subtasks are in their ini-
tial condition. For each subtask i and each state s0−i ∈ S0−i,
there is a child subset Si[s0−i] containing all states where
(1) Mi is not in its initial condition, (2) the private variable
of every other subtasks Mj , j 6= i, have their initial value,
and (3) the variables in X0−i are equal to s0−i, and so, s0−i

represents the context in which subtask i is called. All other
states, for instance, states where two subtask are not in their
initial state, are not reachable. The Abort-Update algorithm
of [Meuleau et al., 2006] is an instance of Asynchronous Pol-
icy Iteration [Bertsekas and Tsitsiklis, 1997] that that exploits
this property. Here, we stress that this hierarchical partition
may serve as the basis to an implementation of HiAO*. In
a sense, HiAO* is to Abort-Update what standard AO* is to
Policy Iteration.

Reusing macro-actions: As explained above, when we ap-
ply HiAO* on an oversubscribed planning problem, there is a
subset Si[s0−i], for each subtask Mi and each context s0−i in
which Mi may be started. For a fixed i, the dynamics within
Si[s0−i] do not depend on the context s0−i. The latter in-
fluences the value of states where we transit when we abort
the subtask (the exit values), and so, the optimal policy, but
not the structure of the explicit graph representing Si[s0−i].
Therefore, if we have computed part of the explicit graph for
a given context, we can reuse/copy it when we want to solve
the same subtask in another context. We might need to ex-
pand this graph further, because different exit values may in-
duce different policies. Similarly, this seed may contain some
nodes that we would not have created if we started the solu-
tion of subtask i in the new context from scratch. However,
we could benefit from this because much of the work of ex-
panding the graph is already done.

Optimality: HiAO* finds the optimal solution within the
predefined hierarchy, which is the definition of hierarchical
optimality[Andre and Russell, 2002]. As shown in [Meuleau
et al., 2006], if the problem satisfies the reset assumption,
then there is an absolute optimal policy that can be encoded in
the hierarchy defined above. Therefore, HiAO* finds the opti-
mal policy if the reset assumption holds. If the reset assump-
tion does not hold, HiAO* based on the hierarchy defined
above finds an hierarchical optimal policy, which may be of
lesser value than an absolute optimal policy. However, we
can use a different hierarchical representation of the problem
that would guarantee absolute optimality. This is achieved by
defining a subset Si[s−i] for each subtask Mi and each state
s−i ∈ S−i = 2X\Xi (note that, now, the context also includes
the private variable of subtasks Mj , for all j 6= i).

4 Experimental Evaluation
The goal of our empirical evaluation is to show that the fun-
damental structural changes of HiAO* are beneficial. For
this purpose, we used several problem instances from a com-
plex planetary rover domain. In this domain, an autonomous
rover must navigate in a discrete graph representing its sur-
rounding and the authorized navigation paths, and schedule
observations to be performed on different rocks situated at
different locations. Each action as an uncertain positive re-
source consumption and a probability of failing. The domain
also contains a significant amount of uncertainty coming from
the tracking mechanism: To perform some measurement on
a rock, the rover must be tracking this rock; and to navigate
along a path, it must be tracking one of the rocks that enables
following this path. However, the rover may randomly loose
track of some rocks while navigating along some path, and
there is no way to re-acquire a rock once the rover lost track
of it (the probability of losing track of a rock depends on the
rock and the path followed). Each problem instance is natu-
rally decomposed in a two-level hierarchy where the root task
is responsible for navigating in the graph, tracking the rocks,
and performing some measures that are not bound to a rock,
such as taking a panoramic camera picture. Each subtask rep-
resent a rock and may possibly contain several goals (several

 0

 500

 1000

 1500

 2000

 2500

 80 100 120 140 160

E
xe

cu
tio

n
tim

e
(s

)

Initial resource

AO*
Hierarchical AO*

Figure 2: Execution time on a sample rover problem.

measures may be taken on the rock).
Our test problems are far out of reach of standard flat MDP

solvers such as Value Iteration, as well as hierarchical algo-
rithms based on flat MDP solvers such as the Abort-Update
algorithm of [Meuleau et al., 2006]. For instance, the prob-
lem used in Fig. 2, with an initial resource of 100, as a total
number of 71 fluents, and so 271 states, which is way above
what a standard MDP solver can handle. Once the prob-
lem is hierarchically decomposed, the root MDP contains 53
fluents (and so, 253 states), and each sub-MDP contains 39
fluents (239 states), and so, it cannot be solved by Abort-
Update. Therefore, HiAO* outperforms approaches based on
flat MDP solvers. This is due to the well-known advantage
of reachability and heuristic information that focus the search
only on the relevant parts of the state space.

It is more interesting is to compare HiAO* with standard
AO*, which uses reachability and heuristic information, but
does not leverage from the hierarchical structure of the do-
main. Figure 2 presents a typical performance curve. It was
obtained using a problem instance involving 3 rocks, 2 goals
per rock, and 2 goals in the root process (panoramic images).
It shows the evolution of the solution time of standard AO*
and HiAO* as a function of the initial resource available to
the rover. Although the complexity of the problem increases
badly with the initial resource, this increase is much less in
HiAO* due to the savings during value updates and graph
traversal. Very similar results were obtained with nearly all
problem instances that we tried, the advantage of HiAO* in-
creasing with the problem size. The only exceptions are tiny
problem instances that are solved in fraction of seconds by
both algorithms.

The results depicted above were obtained using a version
of HiAO* that implements delayed propagation, as described
above, and that uses macro-connectors to by-pass subprocess
states when solving the root process. These two principles
are pretty general and can be implemented in any instance of
AO*, provided that a hierarchical partition of the state space
is defined. However, the algorithm used does not implement
macro-action re-use, which is more specific to oversubscrip-
tion planning. We tried macro-action re-use but did not ob-

serve any significant change in the solution time with this op-
tion turned on (we sometimes observed a very small decrease
in the performances). In a sense, this is pretty encouraging,
as the most general modifications to standard AO* search turn
out to be also the most efficient.

5 Conclusions
We showed how AO* can be modified to make use of hier-
archical decompositions of a domain. This leads to the first
forward search algorithm that explicitly deals with hierarchi-
cal domains. We analyzed the relationship between standard
AO* and the hierarchical version in terms of its effect on the
order of propagation and the introduction of shortcuts in the
form of edges that by-pass levels. Although there is no for-
mal guarantee that these modifications will induce an actual
performance improvement, our experimental evaluation us-
ing over-subscribed planning problems indicate that they are,
indeed, beneficial. Therefore, this paper outlines research di-
rections that could benefit a wide variety of application do-
mains, and possibly other forward search algorithms. In fu-
ture work, we shall examine an additional possible benefit of
hierarchical decompositions: the ability to formulate special-
ized and more accurate heuristic functions.

Acknowledgements
This work was supported by NASA Intelligent Systems pro-
gram under grant NRA2-38169. This work was performed
while Ronen Brafman was visiting NASA Ames Research
Center as a consultant for the Research Institute for Advanced
Computer Science. Ronen Brafman was supported in part by
The Paul Ivanier Center for Robotics Research and Produc-
tion Management and the Lynn and William Frankel Center
for Computer Sciences at Ben-Gurion University.

References
[Amir and Englehardt, 2003] E. Amir and B. Englehardt.

Factored planning. In Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence, pages
929–935. San Francisco, Calif.: Morgan Kaufmann, 2003.

[Andre and Russell, 2002] D. Andre and S. Russell. State
abstraction for programmable reinforcement learning
agents. In Proceedings of the Eighteenth National Con-
ference on Artificial Intelligence, pages 119–125. Menlo
Park, Calif.: AAAI Press, 2002.

[Barto et al., 1995] A.G. Barto, S.J. Bradtke, and S.P. Singh.
Learning to act using real-time dynamic programming. Ar-
tificial Intelligence, 672(1-2):81–138, 1995.

[Bertsekas and Tsitsiklis, 1997] D.P. Bertsekas and J. Tsit-
siklis. Neuro-Dynamic Programming. Belmont, Mass.:
Athena Scientific, 1997.

[Bonet and Geffner, 2003] B. Bonet and H. Geffner. Labeled
RTDP: Improving the convergence of real-time dynamic
programming. In Proceedings of the Thirteenth Interna-
tional Conference on Automated Planning and Scheduling,
pages 12–21. Menlo Park, Calif.: AAAI Press, 2003.

[Dean and Kanazawa, 1993] T. Dean and K. Kanazawa. A
model for reasoning about persistence and causation.
Computational Intelligence, 5(3):142–150, 1993.

[Hanks and McDermott, 1994] S. Hanks and D.V. McDer-
mott. Modeling a dynamic and uncerain world I: Sym-
bolic probabilistic reasoning about change. Artificial In-
telligence, 66(1):1–55, 1994.

[Hansen and Zilberstein, 2001] E.A. Hansen and S. Zilber-
stein. LAO*: A heuristic search algorithm that finds so-
lutions with loops. Artificial Intelligence, 129(1-2):35–62,
2001.

[Meuleau et al., 2006] N. Meuleau, R. Brafman, and E. Be-
nazera. Stochastic over-subscription planning using hier-
archies of MDPs. In Proceedings of the Sixteenth Interna-
tional Conference on Automated Planning and Scheduling,
pages 121–130. Menlo Park, Calif.: AAAI Press., 2006.

[Nilsson, 1980] N.J. Nilsson. Principles of Artificial Intel-
ligence. Palo Alto, Calif.: Tioga Publishing Company,
1980.

[Puterman, 1994] M.L. Puterman. Markov Decision Pro-
cesses: Discrete Stochastic Dynamic Programming. New
York, NY: Wiley, 1994.

[Sutton et al., 1999] R.S. Sutton, D. Precup, and S.P. Singh.
Between MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning. Artificial Intelli-
gence, 112(1-2):181–211, 1999.

